
Designing Procedural Game Spaces: A Case Study

Michael Nitsche
michael.nitsche@lcc.gatech.edu

Robert Fitzpatrick

robfitz@gatech.edu

Calvin Ashmore
gtg126z@mail.gatech.edu

John Kelly

gtg088p@mail.gatech.edu

School of Literature,
Communication & Culture

Georgia Institute of Technology
Atlanta, GA 30032-0165

Will Hankinson
simian@gatech.edu

Kurt Margenau

gtg264q@mail.gatech.edu
 ,

ABSTRACT
Procedural content generation holds many promises
for the design, art, and production of video games. It
also poses a number of challenges. This paper
concentrates on the procedural generation of game
spaces. We specifically argue for a connection of a
player’s agency with the procedural world
generation. First, space generation in games is
broken down into four main approaches: designer-
created, random, player-created, and procedural
spaces. Then, the paper introduces our experimental
game prototype Charbitat that merges these four
stages and provides a practical case study. Charbitat
generates game worlds based on the gaming style of
its players, who create the world as they play it. We
describe how the project met the challenges in
design and implementation. Finally, we point out
new questions opened up by the project and relevant
for procedural content generation.

Keywords
Real-time, virtual space, procedural, video game,
architecture, game design

1. INTRODUCTION
Computers are procedural engines but when it comes
to procedural content, video games rarely utilize
their inherent powers. Procedural game content is
game material – such as AI, sounds, spaces, objects
– that is generated during the game’s runtime. Few
game use this form of content generation; instead,
they rely mostly on pre-fabricated elements.
Dialogue is scripted, levels and objects pre-modeled,
sound pre-recorded, character behavior pre-defined.
Most game research deals with these games because
they dominate the market. Procedural content
generation is far less discussed, although it stands
out as a core feature of the computer as media. That

is why this paper will look at the procedural side of
game design and discuss specifically procedurally
generated 3D game spaces. These worlds are not
fixed but created “on the fly.” Because procedural
approaches shift the content generation into the
algorithm and away from a pre-producing
development team, they add unique qualities to the
world of gaming. Their flexibility opens up new
forms of gameplay and game experiences that have
been recognized as an important element of game
design [6]. Procedural techniques have been applied
in the field of graphics [3], AI [8], character
animation [12], and level generation. This paper
concentrates on the procedural generation of 3D
game worlds.

There are a number of video games that apply
procedurally created game worlds, mostly in the
form of some kind of level generator. We will argue
that too few of them include the world creation as
part of the player’s agency. Yet, this is where such a
feature would change the playing experience most
and where the world generation would merge with
the play. Thus, our argument is twofold: we call for
more exploration in the field of procedural game
content; specifically in the area of generating 3D
game worlds. In addition, we argue, that the player
should affect this generation; the newfound freedom
should enrich the player’s agency in the game.

To present our argument, we deliver an overview
over different forms of game space generation.
Then, we introduce Charbitat, a game research
project conducted at the Experimental Game Lab at
Georgia Tech that provides a practical example for
procedural space generation. We will discuss main
design decisions and technical approaches to provide
our answers to the question of procedural content

generation. Finally we look at new challenges that
grew out of this project.

2. DEVELOPMENT OF GAME SPACES
The role of space has been debated in games
research for some time [1, 9, 16]. This paper
attempts to take the debate into procedural 3D game
spaces. 3D worlds have not materialized over night,
but are the result of a continuous evolution. The
following paragraphs will summarize some key
approaches to virtual space production. The goal is
not to provide a history of game spaces but to find
core plateaus in the evolution of their generation.
This evolution can be broken down into four main
approaches: designer-created, random, player-
created, and procedurally generated game spaces.

2.1 Designer-created Spaces
Designer-created spaces are entirely pre-modeled 3D
game worlds generated by the game developer and
delivered with the game. They are rigid and largely
passive game environments. They offer little or no
opportunity for change but are optimized for a
certain game experience. Once mastered and fully
explored, such a fixed space offers nothing new in
replay. Examples include the levels of the single
player campaign of Half-Life. Such worlds become
interesting only, when the characters’ behavior
within them reaches significant complexity. The
battle arenas of a multi-player-session of Half-Life
remain attractive not because of the flexibility of the
game world, but because of the players’ spatial
behavior in them. The performance not the virtual
stage is the dynamic format and players have little to
no affect on the world itself. The unique movement
of avatars through a Counter-Strike level produces
new spatial configurations between the player
characters driven by social interaction. The value of
these social spaces has to be applauded and has been
investigated (e.g. [4, 14]), but is not topic of this
paper, that looks at the worlds that hosts such a
social gathering. In this respect, these games lack the
notion of interactive space generation.

2.2 Random Level Generators
Games like Diablo or Rogue use mostly random
level generators to build a space within a subset of
set “level elements.” Level elements are space
sections, objects, and entities that are combined to
form a new level. Due to the wide range of possible
arrangements, a player is not likely to ever get the
exact same Rogue level twice. This feature raises the

replay value and the dynamics of the game, but there
is no way for a player to predict or shape the space
generation. With no impact on the level generation,
the agency of the player does not extend onto the
new possibilities of level creation [10]. They always
remain beyond the player’s interaction. Game
worlds can grow into endless levels in which the
variety stays limited and the player’s agency remains
unconnected to the space generation. Random level
generators do not fulfill the second demand posted at
design of procedural game spaces as they do not
involve the player in the process.

2.3 Player-created Spaces
Many games have tapped into players as a powerful
space generating force that can extend the life cycle
and design range of a game significantly. Referring
again to Half-Life, its player-created mod Counter-
Strike is a good example. Developers provide
players with the tools to create own game worlds or
modify existing ones. The result can be an
exponential growth of game environments. The
player-created worlds are basically designer-created
spaces as the main game engine still does not
provide for more responsive environments, but now
there are a lot more of them. They are a child of the
re-mixing and modding culture and depend on
special editor programs that provide access to the
game spaces and allow modification. There is a clear
differentiation between playing and content
generation. Players have to work in an external
editor to change the game world, recompile it, before
they can play it. Play and space generation still
remain separated.

The Massive Multiplayer Online world of Second
Life offers an interesting hybrid approach, where
players can shape and code their own spaces within
the game world. Here, the space creation and the
exploration of the game world can be combined. But
the original interaction design in Second Life lacks
many features of a game as defined in [5, 13] and is
more focused on the creation and maintenance of a
social space.

2.4 Procedural Spaces
The powers of procedural space generation are
tempting: players can create not only their own path
through a game world but also their own game
universe itself. For example, MojoWorld is a fractal-
based world generator that allows for the creation of
whole planets to finest detail. Yet, these worlds lack

any active inhabitants or objects to interact with.
They are visually stunning pieces of extremely low
interactive range.

Other references come from architecture, where
researchers have developed algorithms to generate
virtual cityscapes [17] or abstract “liquid
architecture” [11]. The results are illustrative
structures with little or no interactive ingredients.

Very few games use procedural space generation.
Rescue on Fractalus generated 3D flythroughs of
fractal-based mountains and valleys processed in
real-time. The world was inhabited by enemy forces,
pilots to be rescued, and suicide flying saucers.
Insofar, Rescue on Fractalus features clear
interactive and goal-driven game settings and but it
remains simplistic in its presentation form due to the
original platform (Atari 800 and 5200). Vib-Ribbon
uses sound to create vector-graphic game levels that
consist of long strings of obstacles. The player can
provide the music to generate the world and has at
least indirect control over the level generation but
lack any direct control over the outcome.

The new features pose practical challenges to
technology and design. The main question for our
context was: How to integrate play and world
creation? There cannot be a single solution to such a
challenge but only artifacts that develop the field
further. Charbitat sees itself in that position. The
following paragraphs will provide some possible
answer using our practical game project Charbitat.

3. THE CHARBITAT PROJECT
3.1 Outline
The principle answer of Charbitat to the above
posted question is: In order to integrate space
generation and gameplay, one has to become part of
the other. Charbitat is an experimental single-player
game prototype in which the player creates the
world as s/he plays through it. There are no points to
win or records to break but the gameplay is a goal-
driven exploration and generation of space. This
strategy of level generation differs from the above
outlined space generation methods but combines
them. The space is player-created insofar as players
can steer the world generation through their in-game
actions; it has random elements in the shaping of the
terrain and the positioning of entities and objects; it
has elements of designer-created spaces as it uses
pre-fabricated local objects and some pre-modeled

set pieces; all of these elements are combined in the
procedural space generation.

The background story of Charbitat tells of a young
Chinese princess, who gets poisoned. She is beyond
any doctor’s help and falls into a coma-like state.
The player controls this little girl, now trapped in a
dreamlike state of internal chaos and conflict. The
poison has destroyed her body’s and mind’s natural
balance of the five elements of Taoism. This state
between death and life is the game world of
Charbitat and like a real coma, it can be infinite. It is
the goal of the game to overcome the obstacles,
master one’s own world, balance the elements once
again, and finally leave this borderless dreamscape.

3.2 Technical Implementation
Charbitat uses a full modification of Unreal
Tournament 2004 and a Java program to generate
the game territory. It changed the Unreal system to
modify AI, generate the space, implement a new
interface, and trace player behavior. The Java
program makes up the backend, handling the form,
ingredients, and consistency of the world.

To provide a scalable and continuous game world,
the environment is split into individual tiles, each of
which is about 500 virtual meters across. Instead of
one central seed value, Charbitat uses seed values
for each single tile. This way, it applies countless
individual seed values that spawn smaller locations,
which add up to one seamless 3D world.

Based on these values, the Java backend generates
individual heightmaps for each section. The
underlying terrain is determined using noise
functions and filters, which always include an
element of randomization. The local terrain may

Figure 1. view of one game world

then be mixed with other filters determined by
global landscape features, such as rivers, lakes,
cliffs, and coastlines. These features are selected
based on what is logically permissible for that tile
and consistent with the surrounding world. For
example, if there is coastline on the bordering edge
of a previous tile, then the coastline must continue
into the adjacent tile as well. In that way, we form
the space through continuous and legible features.

Each tile contains a multitude of instantiated objects:
pre-modeled items, creatures, effects, and lights.
These are selected and placed using very similar
techniques. For example, a fire themed tile will
contain primarily fire-oriented objects, fire creatures,
orange lights, and may have ash raining from the
sky. Objects are also organized into categories
according to size, so that there may be lots of small
objects like shrubs and small rocks, a few larger
objects like trees and rocks, and possibly one major
one like a pagoda or a stone arch.

Although Unreal certainly was not designed for such
an experimental game application, it still proved to
be stable enough for the prototype. At the same time,
the lack of access to the underlying engine code also
limited the content generation. For example, we
were not able to implement procedurally generated
textures.

3.3 Design Issues
Entering Charbitat, the player controls the poisoned
princess as she starts on a single tile surrounded by
emptiness. Whenever the character reaches the
borderlines of the existing world and steps into the
void, a new part of the world, a new tile, is
generated and added to the world. The Java backend
keeps the overall world is consistent and manages
the seed values, so that the world can be saved and
reloaded to keep the quest coherent. It can even be
swapped between different players. The main design
issue in Charbitat was to map the player’s actions
onto the world generation. Without any interaction,
the game world will never materialize and remain
limited to the first start tile. In order to involve them
in the space generation, players have to know what
defines the underlying seed values, how they can
affect them, and what the current seed values are.

3.3.1 Elemental seed variables
A key design decision was the use of the Taoist
elemental system as the main variables in Charbitat.
It consists of 5 basic elements: wood, fire, earth,
metal, and water. The whole world of Charbitat is
based on these five elemental variables of which
three have been fully implemented. A fire area is
filled with objects reflecting its nature (e.g. bright
red fire flowers and autumnal trees), a wood area
features different props (e.g. lush trees and shrubs); a
combination of both values would generate a
mixture of objects. The same is true for the
underlying terrain that can be formed differently in
each zone through different filters.

In addition, every entity in the world is connected to
the five elements. There are five varieties of
elemental beings; each one can be either infected
(hunting predators) or healthy (passive prey).
Predator types fight both the protagonist and each
other. They constitute the enemy force to be dealt
with. Whenever the player defeats a predator of a
certain elemental value, the player’s character
statistics are updated accordingly. Defeating a lot of
fire enemies, for example, leads to a strong tendency

Figure 4. facing an attacking enemy in a metal area.

Figure 3. Java backend: a single heightmap (top left);
joining tiles together (left); into consistent worlds (right).

towards the fire element in the character data set.
The character data set is the “elemental value” of the
main hero based on the tracked player interaction. It
is one basis for the space generation. The other
influence stems from the environment built so far. In
order to guarantee a coherent world, tiles cannot
jump from a pure water environment to a
neighboring fire section. Transitions have to be
gradual and the current and each adjacent tile have
to affect any new world section. Thus, whenever a
new tile is generated, the player-dependent character
data is combined with the elemental values of
adjacent tiles and the seed value for the new space
section is calculated. Players influence the space
generator through in-game actions but the system
defines the limits and makes sure that the world
stays consistent. At other occasion, we have outlined
the space generation in dependency to the player
behavior in more detail [10].

3.3.2 Character quests and space generation
Mapping the player behavior onto the space,
Charbitat merges the creation and playing phases.
The development of space depends on the world
being played. Playing the game world and changing
the elemental variables is key to the space
generation. Without spatial progress and interaction
by the player, the game world of Charbitat will not
form.

To give this agency a purpose and distinguish it
from open-ended concepts such as Second Life,
players are set on a mission in the game world. They
have to cure the heroine and find certain elemental
core cells to heal the poisoned elements. Core cells
are designer-created pre-modeled tiles that serve as
goals for the player’s quest to heal the princess.
While the form of these core cells is fixed, their
position is not predefined. The player has to
generate the way to each core cell by playing in a
certain style and thereby forming a procedurally
generated and unique path. For example, the player
must consciously act to maximize her fire element.
That way, she can create an increasingly pure
pathway of adjacent tiles that turn more and more
into pure fire environments. Once the fire value
reaches a certain threshold, the unique fire core cell
is spawned and the player has located one quest
goal.

Because the creation of the path is part of the quest,
the game world turns into a form of spatialized
history of the play.

3.3.3 Informing the player
In order to make reasonable choices in the game and
control the world generation, players need to be
constantly informed about the current state of the
elemental values and the player’s influence on them.
Charbitat provides this information in the only
Heads Up Display (HUD) of the current game: a
compass-like indicator. This “compass” does not
offer any spatial orientation help but tells about the
two main forces that affect a possible new world
generation at the given moment: the player data set
and the current tile the player is in.

Representing all five elements, the compass is
divided into five color-coded sections. The wide
triangles represent the player's elemental alignment
that depends on the player’s interactions. When the
player comes to the edge of the current tile, the
elemental value of the neighboring tile is represented

Figure 3. Creation compass; different elemental values
and their relation between world and player state

Figure 3. Player hovering over one pre-modeled core cell

by the narrow triangles. While this visual
presentation does tell the player know exactly what
the next tile will look like, it informs about the
current relationship between the values. This
information is sufficient to know what to do within
the game world. The player knows her own
elemental values, and can predict the elemental
configuration of new tiles. Players need to be
informed about the tendency in the world generation
and how they can adjust their playing style to steer
this tendency towards their own goal. This kind of
information is immediately accessible in the
“compass.” A strong fire value shows up as a huge
red spike and a large red triangle in the compass.
These symbols indicate a strong tendency towards a
fire section. But the compass also shows opposing
values: if one stands in a water dominated section
and the character values are strongly concentrated to
a fire value, the next tile will be more of a fire type
but still co-shaped by the surrounding water
dominance.

While the designer-created core cells serve as
goalposts for motivating a player’s journey,
procedural terrain filters, object positioning, and
spawn points of entities support a continually
growing unique game world. By tracing the player’s
behavior and informing the player of this trace in the
elemental compass, the player actions are mapped
onto the evolving world. In order to accomplish this
combination of procedural space with player
interaction, we have mixed the various forms of
space generation outlined above. Play and editing
are combined and the player’s agency is expanded
from the immediate fight to the longer-term world
generation. One is not only involved in the action
inside the game world but also in the forming of the
game world itself.

4. DISCUSSION AND OUTLOOK
Charbitat answers a number of design challenges
that are posed by procedural content generation and
builds bridges between different approaches of
world creation. It achieved its main goal to utilize
the power of procedural space generation and
combine it with a play experience. Perhaps the most
innovative aspect of Charbitat is this mapping of the
character behavior onto space. The player creates a
game world while playing in it. This introduces a
relatively new interactive option to game design that

leads to new questions – most of them still in dire
need of more research.

Once Pandora’s Box of procedural content
generation is opened and frameworks about its
implementation established, the possibilities and
challenges are legion. Music, game characters, in-
game camera – all can be generated in reference to
the underlying game space. For the game world
itself, two main points stand out.

One pressing question is that of context. The mere
fact, that we can generate space does not mean that
this space necessarily makes any sense or is of any
value to the player. Procedurally generated game
worlds can stretch into infinity but the meaning of
each single locale can be thinned out by that. It is a
prime argument for designer-created worlds that
they provide control over possible story
developments and a tight structuring of the player
experience.

How can we fill these endless virtual procedural
playgrounds with significance and context?
Charbitat features the quests for the core cells,
which lend structure, motivation, and direction to the
player’s actions. But these quests were still pre-
defined. In a first step towards procedurally
generated spatial quests, Ashmore has implemented
a key-lock puzzle generator into the world of
Charbitat [2]. It introduces procedurally generated
basic quest elements that can be spawned in the
generated worlds. Players can encounter basic key-
lock tasks that send them on the search for a key (a
solution) to overcome a designated lock (a
threshold). Ashmore presents a basic groundwork
for procedurally generated quests that project a
context onto the game world.

A second and related spatial question is that of
orientation. Navigating in a potentially endless space
is a challenging task. Although we have not yet
applied any direct navigational model (e.g. as
suggested by [15]) to Charbitat, we have
incorporated the necessary expressive vocabulary to
address this task. Charbitat not only arranges
entities within each individual tile of the game
world, but also provides for larger, overarching
structures that span over multiple sections. Rivers,
cliffs, walls, and roads are elements that continue
seamlessly from one tile to another and can form
obstacles and landmark features. The combination of
local elements and these larger entities answers

Lynch’s call for a legible space [7]. In addition,
these landmark features can work as thresholds in
the quest and have significance for the overall
gameplay. Rivers, for example, remain thresholds or
obstacles until the player finds the “swim” key.

It is such a combination of generated space and
inherent meaning for action that provides a wide
spectrum for more work. Charbitat presents one
example for the realization of player-shaped
procedural space generation. On top of the
framework applied here one can imagine a second
one that could refer to theories like Alexander’s
pattern language or Hillier’s space syntax.
Ultimately, the mere creation of the game space
cannot be the end goal of any game world, but it has
to be the shaping of experiences in that space.

5. ACKNOWLEDGMENTS
The Charbitat project received generous financial
support from Turner Broadcasting; former members
of the project team include Jason Alderman,
Matthias Shapiro, Katherine Compton, and Martin
Walsh.

6. REFERENCES
[1] Aarseth, E.J. Allegorien des Raums: Räumlichkeit in
Computerspielen Zeitschrift für Semiotik, 2001, 301-318.
[2] Ashmore, C. Key and Lock Puzzles in Procedural
Gameplay Ivan Allen College, Georgia Institute of
Technology, Atlanta, 2006.
[3] Ebert, D.S., Musgrave, K.F., Peachey, D., Perlin, K.
and Worley, S. Texturing & Modeling. A Procedural
Approach. Third Edition. Morgan Kaufmann Publ.,
Amsterdam, Boston, London, New York, Oxford, Paris,
San Diego, San Francisco, Singapore, Sydney, Tokyo,
2003.
[4] Jenkins, H. Game Design as Narrative Architecture. in
Harrington, P. and Wardrup-Fruin, N. eds. First Person:
New Media as Story, Performance, and Game, MIT
Press, Cambridge, MA, 2004, 118-131.

[5] Juul, J. Half-Real. Video Games between Real Rules
and Fictional Worlds. The MIT Press, Cambridge, MA,
London, 2005.
[6] Juul, J. The Open and the Closed: Games of
emergence adn games of progression. Mäyrä, F. ed.
Computer Game and Digital Cultures, Tampere
University Press, Tampere, FI, 2002, 323-329.
[7] Lynch, K. The Image of the City. MIT Press,
Cambridge, MA, 1960.
[8] Mateas, M. Interactive Drama, Art and Artificial
Intelligence, Carnegie Mellon University, 2002.
[9] Murray, J.H. Hamlet on the Holodeck. The Future of
Narrative in Cyberspace. MIT Press, Cambridge, MA,
1997.
[10] Nitsche, M., Alderman, J., Ashmore, C., Compton,
K. and Shapiro, M. The Many Worlds of Charbitat Game
Set Match II, Delft, 2006.
[11] Novak, M. Dancing with the Virtual Dervish:
Worlds in Progress. in Moser, A.M. ed. Immersed in
Technology, MIT Press, Cambridge, MA, 1996, 303-307.
[12] Perlin, K. Can there be a Form between a Game and
a Story? in Wardrip-Fruin, N. and Harrigan, P. eds. First
Person: New Media as Story, Performance, and Game,
MIT Press, Cambridge, MA, 2004, 12-18.
[13] Salen, K. and Zimmerman, E. Rules of Play: Game
Design Fundamentals. MIT Press, Cambridge, Mass.,
2003.
[14] Taylor, L.N. Video Games: Perspective, Point-of-
View, and Immersion English, University of Florida,
Gainesville, 2002, 43.
[15] Vinson, N.G., Design Guidelines for Landmarks to
Support Navigation in Virtual Environments. in SIGCHI
Conference on Human Factors in Computing Systems,
(Pittsburgh, PA, 1999), ACM, 278-285.
[16] Wolf, M.J.P. (ed.), The Medium of the Video Game.
University of Texas Press, Austin, 2002.
[17] Wonka, P., Wimmer, M., Sillion, F. and Ribarsky,
W. Instant Architecture. ACM Transactions on Graphics,
22 (3). 669-677.

