
Situated Play, Proceedings of DiGRA 2007 Conference

© 2007 Authors & Digital Games Research Association (DiGRA). Personal and educational classroom use of this paper is allowed,
commercial use requires specific permission from the author.

The Quest in a Generated World
Calvin Ashmore

School of Literature, Communication, and Culture
Georgia Institute of Technology

Atlanta, GA 30332-0165
ashmore@gmail.com

Michael Nitsche
School of Literature, Communication, and Culture

Georgia Institute of Technology
Atlanta, GA 30332-0165

michael.nitsche@lcc.gatech.edu
ABSTRACT

As procedural content becomes a more appealing option for
game development, procedurally determined context is
necessary to structure and make sense of this content. We
find that a useful means to structure content in 3D games is
the quest. The task of generating necessary context then
becomes one of quest generation. This paper describes how
we implemented a basic quest generator based on key and
lock puzzles into a procedural game world. It uses notion of
quest as spatial progression and discusses the design of the
game world and how our quest generator connects to it. Its
findings are twofold: on the technical level we managed to
implement a highly flexible content and context generator
into an existing game engine; one the content level we can
trace signs for higher player interest in quest-enhanced
procedural game worlds in comparison to unstructured
spaces.

Author Keywords
Procedural generation, spatial generation, quests, virtual
space, video game

PROCEDURAL SPACE AND THE QUEST
The field of procedural content has found a substantial
amount of attention recently. This is largely due to Will
Wright's brainchild Spore. Spore's use of generated content
is augmented by the game's open playing style. Procedural
content not only makes development cheaper but also offers
new design issues and challenges. The player of a
procedural world can actively shape its development and
customize the result. The game world itself can become a
reflection of the player and her intentions. But to do that
there must be some method of contextualizing generated
content within a game environment. The problem is less
one of content generation than one of context building. This
paper addresses the Charbitat project which uses spatial
metaphor to tackle the problem of quest generation within a
procedural space.

Procedurally generated space has been used in games since
the earliest days of electronic games. The reason was
twofold: 1) Early games did not have the necessary memory
space to hold the graphical details of designed levels; and 2)
generated levels would ensure a different experience on
each play. In that way, even technologically limited games
could offer seemingly endless game universes and a high

replay value - as seen e.g. in Elite. The difference in level of
detail or other visual cues between designed levels and
generated ones was not significant because the graphical
level of detail was limited. For example, Rogue used basic
ASCii symbols but the game world still stands for an
innovative and engaging approach. As storage space has
become ample through better data media and faster
processing of the data, hand-crafted level design has
become the norm. But with ever more powerful systems,
production costs have soared as game worlds demand ever
more content to provide their players. That is one reason
why procedurally generated content has seen a revival. It
seems to offer an exit strategy out of the spiraling increase
of content production costs.

Creating procedural content is not necessarily difficult, but
creating meaningful content is substantially more
challenging. It is relatively easy to create random levels but
far more complicated to infuse these levels with some
meaningful structures. Yet, without context and goals, the
generated behaviors, graphics, and game spaces run the
danger of becoming insubstantial and tedious. Even if it is
rife with interactivity and content, without context, the
space is merely an empty shell instead of a game. As in the
game Myth, such an environment is a discursive machine
[2], having the potential for gameplay but lacking purpose.
Countering this lack, we argue that generated spaces have
the potential to intrigue and inspire the player and not
merely be an open expanse or infinite dungeon. We argue
that the necessary context can be provided by procedurally
generated quests that assign significance to the game
locations.

This paper will suggest a way to generate quests by
situating them inside a player-driven procedurally generated
3D world. We implemented a prototype of this system in
the experimental game Charbitat. In Charbitat, players
generate an infinite 3D world as they explore and interact
with it. On top of this content creation, our system
generates quests situated within the space to meaningfully
direct the player’s experience by creating goals and
challenges. We thereby introduce a second tier to
procedural generation: that of context on top of content.

503

Procedural Game Spaces
In the history of games that use procedural space generation,
there have been largely two approaches. The first
concentrates on open spaces or terrain. The generation
process works by creating maps or heightfields, usually
determined by some fractal algorithm [5]. An early example
of terrain generation is in Lucasfilm's 1995 Rescue on
Fractalus!, and this sort of generative method has been
extended to form the basis for a lot of default terrain in
many games. Terrain generation eventually has been used
to form the basis for whole planets in Spore, and in non-
game programs such as TerraGen and Mojoworld.

A second approach aims at the generation of dungeons and
interior spaces. Unlike open terrain, these spaces have
explicit constraints and use them to partition the
environment. The assembly of these constraints is used to
generate new levels. This method originates in Rogue and
Nethack and has since been extended into more recent titles
like Diablo, and forms the basis for the generated dungeons
in the Nippon Ichi titles such as Disgaea and Phantom
Brave.

Other spatial generation projects use different constraints
for generation of space. One example is the CityEngine
project [11], which simulates cities by using water,
elevation, road patterns, and population density. While the
application of this project is not appropriate for a game
world, it describes a method for generating spaces based on
logical parameters. Also relevant is the Instant Architecture
project, whose aim is to create a grammar for architectural
form [15].

The space-generation method in Charbitat uses a synthesis
of all the above. It uses a tile-based system in which every
single tile is treated as a terrain and generated through a
heightmap. Every tile is populated with virtual flora and
fauna, which are positioned following certain spatial
conditional rules and filters [10]. As a result, the generated
space is not only highly versatile but also structured around
certain conditions. This allows for spatially situated quests
to be implemented into a unique and infinite procedurally
generated landscape. We see the value of such a generator,
for example, in MMO worlds or a new breed of RPG and
adventure games.

Defining the Quest
As a device, the quest transcends game genres, and can be
thought of as a means for structuring play within a virtual
environment [7]. Quests consists of several recurrent
properties, such as the objective, the task, and success or
failure conditions, several of which are explored in Aarseth
[1]. Notably, quests vary in their presentation and execution,
so developing a comprehensive definition is difficult. Here,
we shall examine quests as they are defined in several
genres and identify the kind most applicable to the
procedurally generated setting.

Quests have been widely applied in numerous games [14] in
many different ways. Some titles require quests to be

completed in a linear order others allow many concurrent
optional quests to take place at once. The simulation
described in this paper uses linear quests, but in the future,
it could be extended to accommodate others. When
searching for useful kinds of quests to adapt in a
procedurally generated environment, there are a variety of
possible options to choose from.

Quests dominate Role-Playing-Games and many Massive-
Multiplayer-Online-Games, where they often have explicit
starting and completion conditions. In this type of quest, the
player is given a specific task that they may fulfill in the
environment. In this case, quests are gradually revealed and
form a meta-structure in themselves, as seen in the leveling-
up quest structure of World of Warcraft that carefully
orchestrates spatial progression through questing that
references a character's level and ability. These quests could
be read as quests of personal growth as well as spatial
expansion. In our case we restrict it to the virtual hero and
her development that can be quantitatively measured and
regulated.

A quest-situation can also be read into mission-based games,
such as Counter Strike, in which players’ goals are encoded
in terms of explicitly defined objectives in the space such as
“Bring this virtual item to that location and activate it – then
defend it against opponents”. These goals are known to all
parties before the game starts and are often met with
opposition from other teams attempting to accomplish their
own goals within the space. For instance, players must
secure strategic areas, protect other players or non-player-
characters, or prevent the other team from reaching their
own objectives. Winning the game and delivering on a
quest within a game session depends on defeating other
players as much as it does on spatial progression.

A third type is the type of quest that is motivated by
exploration of a space. In this type of quest, players explore
a space, but are restricted by some obstacles (locks) that
have to be overcome with the help of some items (keys).
Both are presented in the game space itself. We find these
kinds of quests in the Zelda and Metroid game series.
Obstacles may not be passed until the player obtains some
token (such as an item or skill), yet the quest depends less
on the growth of the character and more on the items
collected. There are several factors at work here: first the
player must recognize the obstacle and understand that they
need to find something to get around it, then the player
must actually obtain the token, and finally the player has to
pass the obstacle. This type of activity is the key and lock
puzzle, and shall be explored in detail momentarily.

Across the various game outlined above, quests are
understood as dramatized searches that can follow certain
themes and patterns. Such patterns have been outlined e.g.
by Propp [12] and Campbell [3] – both have been applied to
game studies [13]. Others have interpreted quests a
religious or personal/ psychological journeys (e.g. pointing
at the Jungian origins of Campbell's approach). Charbitat,

504

in fact, plays with the notion of a quest as a psychological
journey in the narrative setting of an internalized
dreamscape. The hero in Charbitat has been poisoned and
remains trapped in her own dreamworld. The mission is to
find certain locations within this dreamworld to heal herself.
But although the psychological dimension of quests is
important for their understanding and context, we limit the
discussion here to the actual performance of the questing.
For the purposes of this paper, the quest is realized in a
form of spatial progression [6].

We concur with Aarseth [1]: “If we examine a number of
adventure games, they all seem quite similar in terms of
form: the player-avatar must move through a landscape in
order to fulfill a goal while mastering a series of challenges.
This phenomenon is called a quest.” Aarseth's definition
has three elements: the space, the challenges, and the goal.
In addition, we suggest a forth element to specify a quest:
the setting. The quests in Charbitat are framed within a
larger dramatic setting that is defined by the fictional game
world that must be healed. The player’s engagement with
the game world changes depending on the way quests are
framed. Game quests like these are part of a game’s
fictional world [8]. Goals and challenges of a quest are
situated within the virtual space of a game world, which in
turn is situated within this larger fictional dramatic setting.
Together these coalesce into four core elements that are the
framework for understanding and defining quests in a
virtual world: The setting, the space, the challenge, and the
goal.

This definition poses certain demands to quest generation.
Certain conditions have to be met in order to make a quest
recognizable and accessible to the player. First, the player
must be made aware of the quest setting, understanding the
goal and objective. Next, the quest must be situated in an
accessible space, within which the player has the capacity
to fulfill the specified goal. The goal must be attainable, and
there must be obstacles to challenge the player to overcome.

For a key-lock structured quest in our case this means: the
goal is made evident when the player first encounters a lock
in the form of an spatial barrier; when the player has found
the specific token (key) that allows him or her to overcome
the barrier a second key level in the quest has been reached;
using the key to unlock the barrier opens up the space and
completes the quest. All of these steps have to be clearly
implemented in a procedural quest generation.

ON CHARBITAT
The Charbitat project is a full modification of the Unreal
Tournament game. It uses procedural techniques to generate
a game world at runtime as the player explores the already
existing environment. The system has been described in
greater detail in other papers [9, 10]. The goal in Charbitat
is to generate space according to the player's actions in the
game world. The world is partitioned into square tiles,
which may be thought of as the basic unit of space within
the game. The player navigates the overall world stitched

together from infinite tiles that are calculated on demand
and then placed in the world.

Figure 1: Different
Elements

The tiles in Charbitat can contain 3D objects that might
ordinarily be placed by a level designer. These include
static mesh objects, such as trees and rocks but also
dynamic elements such as lights, sounds, creatures, pick-up
items or powerups. While the tiles are generated as terrain
structures using height maps and malleable surfaces, objects
are spawned according to certain rules and conditions.
Every single tile is a small world generated in a
combination of the two aforementioned generation
techniques. Charbitat traces player behavior within the
world and uses this data as seed values for the tile-
generation. At the same time, the overall game world is also
weighted. Tiles can have global features that span across a
single territory. These features include rivers, walls, cliffs,
roads, or coastlines. The generated tiles persist behind the
player as she explores, coalescing the empty space into a
landscape. The player leaves the world in her trail, complete
with rivers, forests, and mountains as she moves through
the game. At any moment players can load and save worlds
to return to them later.

In our tests, the open nature of the game world in Charbitat
was appealing to players, but it lacked context. It invited
players to explore and create more of the world but did not
provide much of an immediate direction or context between
different tiles. The game has an overall narrative and
dramatic setting with several goals within the space, but the
space was not confined or limited in any way. A quest
structure was seen as necessary to direct the player's
activity.

With the tile system, the space in Charbitat is an open,
literally infinite, world. Once generated the world is a
contiguous environment. Thus, our quests had to span
beyond single tiles and operate on the level of the overall
world instead. The terrain generation offered already
affordances for impeding and blocking player progress:
rivers, walls, and cliffs. Games that use key and lock
puzzles, such as the Zelda, Metroid, and Castlevania series,
use features like these to block the player's progress within
the space. Instead of partitioning the game experience via

505

levels and stages, they use the environment itself to limit
the player. In addition, we included virtual walls and
bridges as artificial barriers, that can be positioned
anywhere in the generated landscape. With this collection
of procedurally generated elements, Charbitat provides a
useful platform for quest generation because it fulfills the
demands for setting and blocking player progress in a
highly flexible way.

KEY AND LOCK PUZZLES
Key and lock puzzles are a widespread convention in games,
but tend to be most effective when the keys do not just open
doors but add an extra dimension to the gameplay. Keys
enable the player to perform new actions within the game
world.

In The Legend of Zelda: A Link to the Past, the magic
hammer can dispose of posts that block the player's
progress but it also is powerful against certain enemies. The
bombs that are found early in the game can be used to open
sealed walls and they can also be picked up and thrown to
fight enemies. In Super Metroid, the player can find a
grappling beam that allows movement to not only
previously inaccessible areas, but allows shortcuts through
some areas that have already been previously visited. The
engagement with the game space, quests, and objects
situated therein are closely intertwined on multiple, but not
always directly connected, levels. They carry characteristics
of puzzles.

Game designer and theorist Chris Crawford has argued
against puzzles as too static game elements [4]. But here the
key and lock puzzles are realized in a generative space,
which provides for very flexible structure. The puzzle is
finding out what is an obstacle, what and where is a key to
overcome it, and finally using the key to master the
challenge. In pre-designed environments this part is static
for most games but due to the player-driven and
procedurally generated worlds in Charbitat the conditions
in our system are ever changing.

The key and lock puzzle may be considered solved when
the location of the key is revealed, and the player is free to
move on to the next area. However, the appeal of the key
and lock puzzle is not only in determining the location of
the key and navigating to the next obstacle, but it is in the
thrill of meeting challenges along the way and the
interaction with the space and the key itself, which extends
the player's ability to interact with the game world.

Each key that needs to be found is its own quest, and the
path to the key may be fraught with challenges and
obstacles, reinforcing the power of freedom that the
newfound key gives to the player. The puzzles tie the quest
to the space of the game world. The lock itself is a property
of the space, embedded in the game environment. When the
nature of the lock in space is realized, the player's goal
becomes to apply the key so that they can overcome the
lock in the space. This introduces the quest: find the key.

The challenge is to find and apply the key item itself. To
keep this search engaging, the generation method must
place obstacles and challenges along the way to obtain the
key and finally use it to overcome the challenge. The search
is dramatized and not just a matter of mere retrieval. With
that we achieve our initial goal: to contextualize the
procedurally generated game world and increase player
involvement with it. The key and lock puzzle is the bridge
between the generated space and the quest.

IMPLEMENTATION
World and quest generation in Charbitat happen during the
expansion of the game world. Whenever a player reaches
the end of the current world and steps up to an edge of a tile
in Charbitat, a message is sent to the Java backend to create
a new tile based on the current player status and the
surrounding world. The backend will go through all of the
possible allowable configurations for that spot, and choose
the best one. It does this by scoring each possibility
according to rules that characterize the qualities quests
should have in the space. These rules are programmatically
defined and shall be explored momentarily.

In order to provide a useful extension to the current world,
the backend has to analyze the current condition and select
from the countless possible additions. For the key and lock
generation it specifically has to be aware of what keys and
locks exist in the world and how they are arranged. Based
on that knowledge it creates tiles that manifest the
appropriate quest structure in the new game space using
structures such as rivers or walls that can block player
progress and spawning keys as pick up objects in other tiles,

Locks are a property of the tile configuration. The matter of
choosing configurations and determining where to place
keys requires a thorough analysis of the game world. This
analysis is done using a graph. Using the graph network, the
procedural quest generator applies the necessary
conditioning to structure the player’s progress. It is here
that the generator makes sure that all locks remain
unlockable and every key is spawned in the proper section.
At the same time it takes care such that not all keys will
appear too fast and too close.

Thinking only of the key and lock puzzles, the world may
be decomposed into a graph of nodes. Nodes are identifiers
for game spaces and describe to which region this space
belongs as well as the condition of this game space.
Because any tile might be separated by spatial barriers any
single time can contain different nodes belonging to
different regions that, in turn, depend on certain keys.
Nodes within a tile are connected to each other, as well as
to nodes in adjacent tiles. Each connection may have a lock
that defines what type of barrier exists between the areas
represented by the nodes. A tile with a river running
through it will have two areas which are connected by a
“swim lock”, indicating that the player must have an item
that permits swimming in order to pass from one area to the
other. The area nodes correspond to the two banks on either

506

side of the river. If the player is in one of the areas, there is
no way for him or her to move to the other side of the graph
without the appropriate key.

Figure 2: A tile split
by a river.

The locks in Charbitat are of a simple one to one mapping.
Locks are often represented as gates in the game world, and
the key is an item that will destroy the barrier. We have
implemented a number of unique keys: a swim capability to
cross rivers, bombs as weapons as well as key to destroy
crumbling walls; a water weapon to put out a gate of flames.
This logic represents generic key and lock situations using
color coded walls and keys: a red key for a red door, a
green key for a green door, and so on.

Charbitat also spawns the inhabitants of any tile. Thus,
although it is not implemented in the current version of
Charbitat, it would be possible to add enemies, specifically
boss enemies, to “guard” keys. This would provide a
growing level of dramatic tension in finding key items in
the game world and add to the existing challenge to solve
the quest.

Figure 3: Java
backend in action

The actual quest structure works by using rules that dictate
what kinds of keys and locks should be placed in the world.
These rules are defined using snippets of code called
evaluators. These evaluators take an area network, with all
of its nodes and locks, and produce a score, which ranks
that particular world. There are usually several of these
evaluators at work, which rank networks based on several
different guidelines for how the key and lock puzzles are
supposed to be implemented.

When the backend is going through the different
configurations, it will compare the full area networks that
would be created given the configuration in question, and
score the configuration based on the evaluators assessment
of the network.

Evaluators work addressing the arrangement of locks, the
grouping of accessible areas, and the placement of keys.
There are around a dozen evaluators in total that work in
Charbitat. Each evaluator aims to fix some particular rule
about key and lock placement in the world. Some
evaluators encourage the placement of keys under certain
circumstances; others restrict the placement of keys in other
circumstances. These evaluators must aim to select
configurations that will lead to a working whole. The tiles
are only parts of the game world, but the goal is to structure
the overall world, thus the evaluators must not choose
configurations that are the best at the moment, but those
which will lead to the best overall results for the game
world.

Each evaluator serves a specific purpose, representing some
property of quests that we have determined for the world of
Charbitat. One of the rules used in Charbitat is that there
must be at least three locks of a given type that precede the
appearance of a key. The evaluator that enforces this ranks
poorly any network in which fewer than three locks appear
before the corresponding key is placed. Another rule is that
the player should see many types of locks in the beginning
of the game, so that when these areas are revisited, the
player will be able to access areas that were previously

507

inaccessible. This rule’s evaluator ranks highly networks in
which there is a great diversity of locks visible in the
currently generated world. Charbitat uses a total of about
13 simple rules to define its space, but the choice and
tuning of these rules is a matter of game design rather than
the formulation of the quest itself.

The rules employed by the evaluators are flexible, and can
be modified to change the style of world and the resulting
quests and experience. Different types of rules may be
chosen to change the relation between the player's
interaction with the space and the keys and locks. Rules can
be defined to adjust the curve of dramatic tension, by
placing enemies and bosses near the keys. The evaluators
could be tuned to encourage backtracking through
previously explored space, so the player can find parts that
they missed without the new keys they've found.
Alternately, they could be tuned to eliminate backtracking
entirely so the space is entirely linear. The construction of
the evaluators thus gives a tremendous amount of design
control over the possible resulting worlds.

Since each evaluator encodes a specific rule, by changing
the programming of the evaluators, the world that they
create would be changed. However, in keeping with our
definition of quests, the tiles automatically encode the space
into the world, while the evaluators introduce the setting,
challenges, and the goals by placing obstacles, opponents,
and keys. The underlying system is flexible enough to
accommodate many variations while still maintaining the
quests’ fundamental characteristics. Without these
constraints, tiles would merely be random collections of
meaningless areas. It is in this way that the problem of
building a game world changes from raw construction to a
more manageable problem of selection, and the context of
the quest is infused into the procedural game world.

CONCLUSION
In this paper we have analyzed quests in video games with a
focus on their spatial situation and conditioning. We
consider both as key elements of any player situation within
a game universe. Based on the notion of quests as
consisting of setting, space, challenge, and goal, we
introduced a quest generator that was implemented and
tested in a procedural game world prototype. This generator
uses tiles and configurations to partition and organize space.
By embedding obstacles in the space of the generated game
world itself the generator can create quests around key and
lock puzzles that are situated in the game space. In return,
we argue that players become more engaged in the game
space thanks to the engaging context.

One of the first challenges to overcome was adapting
Unreal Tournament 2004 to work with the procedurally
generated environment. Charbitat was designed as a full
modification with the Java backend running in parallel.
Most real time game platforms – including Unreal – are
still designed for static levels or rigidly defined spaces. We
had to coax the generative behavior into the otherwise static

world. This problem comes in two parts: the first is in
actually creating the environment within the space, and the
second is in overcoming the lack of scene optimization that
is available for static scenes.

A second challenge occurs in defining the evaluators. These
are of tremendous importance in channeling the gameplay
but are difficult to write. Ultimately, these evaluators must
be able to evaluate a whole game world and make a
decision for which new tile will best fit into the whole
picture. The quality of any quest depends on them. In
Charbitat, this decision making is incremental as opposed
to holistic, which allows the world to be built up freely. But
this also means that occasionally the backend will have a
hard time getting the world to fit together so that it flows
correctly.

Charbitat has been demoed and played by visitors and other
researchers on numerous occasions. Yet, using this as a
basis to evaluate the quest generation in a traditional
usability way remains difficult. First, because the notion of
the quest might be understood very differently by different
players; second, because every player of Charbitat creates a
unique game world with different conditions and quest set
ups. No quest world is ever repeated and any direct
comparison between player performance in the game world
becomes dubious. Because our system delivers a player-
driven and completely unique game environment it
becomes difficult to compare two player performances next
to each other.

What became clear in the testing was that the prototype
supported better orientation and higher engagement with the
quest generator in place. Charbitat always featured enemy
encounters and an appealing visual environment, but with
the quest system at work players felt most intrigued by this
structuring of spatial progress. Any virtual barrier
inevitably triggered the desire to circumvent or overcome it.
Providing means for that through our system was an
effective answer to that call. We interpret this as a first
indication for a successful referencing of existing game
play mechanics in a generative environment. Basic as the
key and lock puzzle set up might be it activated the player
to engage in a quest and this activation added to player
engagement. To optimize the evaluators and fine-tune this
quest-generation more detailed evaluation is still needed.
Developing an evaluation framework for quests alone
would seem a valid future research endeavor.

The system as implemented in Charbitat provides a
fundament for further development of procedural context
generation. It invites players to experiment with the
generation and alter the evaluators. If quests are reflections
of and occasions for personal growth, then these evaluators
could be individualized to the extreme. Then players indeed
can engage with their very own personalized unique quests.

508

REFERENCES
1. Aarseth, E. “Beyond the Frontier: Quest Games as Post-
Narrative Discourse” in Ryan, M.L. Narrative Across
Media, University of Nebraska Press, 2004.
2. Aarseth, E. “Allegories of Space: The Question of
Spatiality in Computer Games” Cybertext Yearbook 2000.
Ed. Markuu Eskelinen, Raine Koskimaa. Jyväskylä,
Finland: University of Jyväskylä, 2000, pp. 152-171.
3. Cambell, J. The Hero with a Thousand Faces, 2nd Ed,
PUP Press, Princeton NJ, 1968.
4. Crawford, C. The Art of Computer Game Design.
Osborne/McGraw-Hill, Berkeley, CA, 1984.
5. Ebert, D. et al, Texturing and Modelling: A Procedural
Approach, 3rd ed, Morgan Kaufmann, San Francisco, CA
2003.
6. Fuller, M., and Jenkins, H. “Nintendo and New World
Travel Writing: A Dialogue” in Jones, S.G. (ed.)
Cybersociety: Computer-Mediated Communication and
Community, Sage Publ: Thousand Oaks, 1995, 57-72.
7. Jenkins, H. “Game Design as Narrative Architecture” in
Harrington, P. and Wardrip-Fruin, N. First Person: New
Media as Story, Performance, and Game, MIT Press,
Cambridge, MA, 2004, pp. 118-131.
8. Juul, J. Half-Real: Video Games between Real Rules and
Fictional Worlds, MIT Press, 2005.
9. Nitsche, M. et al. “Designing Procedural Game Spaces:
A Case Study”, in FuturePlay 2006, 2006.
10. Nitsche, M. et al. “The Many Worlds of Charbitat”, in
Game Set and Match II, 2006.
11. Parish, Y. and Müller, P. “Procedural modeling of
cities”, in SIGGRAPH ‘01, ACM Press, 2001.
12. Propp, V. Morphology of the Folktale 2nd Ed, University
of Texas Press, 1968.
13. Szilas, N., “Interactive Drama on Computer: Beyond
Linear
Narrative” AAAI Fall Symposium on Narrative Intelligence
Tech. Rep. FS-99-01 1999 pp. 150-156.

14. Tosca, S. “The Quest Problem in Computer Games” in
Proceedings of Technologies for Interactive Digital
Storytelling and Entertainment conference, Darmstadt,
2003.
15. Wonka, P. et al, “Instant Architecture” in ACM
Transactions in Graphics 22, 3, 2003.

REFERENCES (GAMES)
Spore, Wright, W. for Maxis/Electronic Arts, 2007
Elite, Braben, D. and Bell, I. for Firebird Software, 1984
Myth, Bungie, 1997
Rogue, Toy, M. and Arnold, K. for Artificial Intelligence
Design, 1983
Nethack, open source game, 1992
Rescue on Fractalus!, Fox, D. for Lucasfilm
Games/Activision, 1986
Disgaea: Hour of Darkness, Nippon Ichi/Atlus, 2003
Phantom Brave, Nippon Ichi/NIS America, 2004
Diablo, Blizzard Entertainment, 1996
World of Warcraft, Blizzard/Vivendi Universal, 2004
Counter Strike, Le, M. and Cliffe, J. for Valve
Software/Vivendi Universal, 1999
Return to Castle Wolfenstein, Id Software/Activision, 2002
The Legend of Zelda (series), Miyamoto, S for Nintendo
1986-2006
Metroid (series), Retro Studios/Nintendo, 1986-2007
Castlevania (series), Konami, 1997-2006
Unreal Tournament, 2004, Bleszinski, C. for Epic/Atari,
2004

509

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

